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Abstract 

The complement system is an ancient part of innate immunity sensing highly 

pathogenic coronaviruses by mannan-binding lectin (MBL) resulting in lectin pathway 

activation and subsequent generation of the anaphylatoxins (AT) C3a and C5a as 

important effector molecules. Complement deposition on endothelial cells and high 

blood C5a serum levels have been reported in COVID-19 patients with severe illness, 

suggesting vigorous complement activation leading to systemic thrombotic 

microangiopathy (TMA). Complement regulator gene variants prevalent in African 

Americans have been associated with a higher risk for severe TMA and multi-organ 

injury. Strikingly, SARS-CoV-2-infected African Americans suffer from high mortality. 

These findings allow us to apply our knowledge from other complement-mediated 

diseases to COVID-19 infection to better understand severe disease pathogenesis. 

Here we will discuss the multiple aspects of complement activation, regulation, 

crosstalk with other parts of the immune system and the options to target complement 

in COVID-19 patients to halt disease progression and death.   

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3640
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=573
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Introduction 

COVID-19 infection by Severe Acute Respiratory Syndrome (SARS)-Coronavirus 

(CoV)-2 was first identified in December of 2019 in China. Since then, it has rapidly 

spread worldwide and caused a pandemic that unites clinicians and researchers 

around the globe in their efforts to understand disease mechanisms and the host 

response to design effective clinical interventions. The United States of America is one 

of the countries with highest incidence of COVID-19 with 1.839.1674 cases diagnoses 

and 106.312 of total deaths by June 3, 2020 

(https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd

40299423467b48e9ecf6).  

SARS-CoV-2 belongs to the family of Coronaviridae, positive-sense single stranded 

RNA viruses that frequently cause mild respiratory infections in humans. During the 

past two decades, two endemics with SARS-CoV in 2003 and Middle East Respiratory 

Syndrome (MERS)-CoV in 2012 occurred with estimated case-fatalities of 14-15% or 

even 35% in case of MERS-CoV (Gao et al., 2020). COVID-19 disease has a wide 

range of clinical presentations from asymptomatic cases to severe respiratory 

involvement acutely progressing to Acute Respiratory Distress Syndrome (ARDS) and 

multi-organ failure. A growing body of literature on COVID-19 reports atypical 

presentation of ARDS (Gattinoni, Coppola, Cressoni, Busana, Rossi & Chiumello, 

2020) as a result of host immune system overactivation and fatal hypercytokinemia, 

leading to tissue injury and multi-organ failure, which may be attributed to an 

overactivated complement system (Gao et al., 2020; Lipworth, Chan, Lipworth & 

RuiWen Kuo, 2020; Magro et al., 2020; Risitano et al., 2020).  

 

https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=1034
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=1034
https://gisanddata.maps.arcgis.com/
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Complement activation and function in highly pathogenic coronavirus 

infections 

The complement system senses invading pathogens as well as environmental or self-

derived antigens by pattern recognition molecules of the canonical classical and lectin 

pathways (CP and LP). This function is critical to our sustained health and survival. It 

is characterized by a cascade of proteolytic events leading to the cleavage of C3 into 

the AT C3a and the opsonin C3b by pathway-specific canonical C3 convertases. 

Consecutively, such C3 convertases build the framework for C5 convertases that 

cleave C5 into the AT C5a and C5b. In addition to CP and LP activation, the thioester 

in C3 can be directly activated by any nucleophilic attack leading to the activation of 

the so-called alternative pathway (AP), driving substantial amounts of C3 and C5. 

Eventually, C5b serves as the nucleus of non-proteolytic terminal pathway activation 

leading to the formation of the soluble (s)C5b-9 complex in the circulation and the 

pore-forming membrane attack complex (MAC) on cell surfaces, which can directly 

lyse cells (Figure 1).  

Similar to SARS-CoV, the genome of SARS-CoV-2 encodes for several structural and 

non-structural proteins including the spike (S) protein, which is critical for cell entry 

through engagement of ACE2 and the employment of the cellular serine protease 

TMPRSS2 for S protein priming (Hoffmann et al., 2020). The S protein of SARS-CoV 

is sensed by MBL suggesting that complement activation in SARS-CoV infection is 

driven by activation of the LP (Ip et al., 2005; Zhou et al., 2010). Also, nucleocapsid 

(N) protein interaction with mannan-binding lectin serine protease (MASP)-2, the key 

protease of LP activation has been described for SARS-CoV, MERS-CoV and SARS-

CoV-2 and affects LP activation (Figure 1)(Gao et al., 2020). In addition to MBL/MASP-

2-driven activation of the LP, complement might be activated by the CP through virus-

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9414
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8712
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3114
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1614
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=1034
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neutralizing IgG antibodies (Figure 1). In COVID-19 patients, seroconversion occurred 

at a similar time or slightly earlier than was seen in SARS-CoV patients. Around 50% 

of COVID-19 patient showed seroconversion on day 7 after development of symptoms 

(Wolfel et al., 2020). Of note, in SARS-CoV-infected patients, the appearance of anti-

viral IgG coincided with onset of ARDS in 80% of patients (Peiris et al., 2003). 

Complement activation by the three activation pathway results in the generation of the 

small cleavage fragments of C3 and C5, the ATs C3a and C5a. They are important 

effector molecules that attract, activate and regulate innate and adaptive immune cells 

(Laumonnier, Karsten & Kohl, 2017). C5a exerts powerful proinflammatory properties 

through activation of such proinflammatory cells. For example, C5a induces the 

expression of IL-1 and CXCL8/IL-8 in mononuclear cells and enhances the release 

of IL-6 and TNF- (Schindler, Gelfand & Dinarello, 1990).  

The development of ARDS is mediated by the recruitment and activation of 

inflammatory cells such as neutrophils, eosinophils, monocytes and T lymphocytes 

(Meliopoulos et al., 2014). Similar to SARS-CoV-2, MERS-CoV or SARS-CoV 

infection, Influenza virus infection can be associated with a rapid progression to ARDS. 

MERS-CoV drives the production of inflammatory and chemotactic cytokines as well 

as chemokines such as CXCL-10, CCL2, IL-8, IL-12 and IFN-, which can cause 

severe lung damage (Jiang et al., 2019; Jiang et al., 2018). High levels of C5a have 

been found in bronchoalveolar lavage fluid (BAL) of individuals affected by viral-

mediated acute lung injury (ALI) but not in BAL from recovered patients with ARDS 

(Wang, Xiao, Guo, Li & Shen, 2015). Importantly, the histopathological changes in the 

lung from patients infected with influenza virus mimic those infected with SARS-CoV 

(Meliopoulos et al., 2014). The influenza virus is highly pathogenic and replicates in 

the lower respiratory tract. It drives pulmonary complement activation leading to high 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4974
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=821
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4998
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5074
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=835
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=771
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4977
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4968
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levels of C5a in BAL and serum (Ohta, Torii, Imai, Kimura, Okada & Ito, 2011). In 

experimental, highly pathogenic avian influenza H5N1 infection, C5a contributes to 

ALI. Further, inhibition of C5a by a C5a-specific mAb alleviated such lung injury in 

H5N1 virus infection in this mouse model (Sun et al., 2013). Similarly, anti-C5a mAb 

treatment improved the outcome of H7N9 virus infection in African green monkeys; in 

particular such treatment attenuated ALI and systemic inflammation, i.e. the “cytokine 

storm”(Sun et al., 2015). Perhaps of even more importance, blockade of the 

C5a/C5aR1 axis reduced lung and spleen tissue damage and the inflammatory 

response in experimental MERS-CoV infection. Also, C5a/C5aR1 blockade decreased 

viral replication in the lung. Recently, it was further shown that C3-deficient mice 

infected with SARS-CoV suffered from less respiratory dysfunction associated with 

less recruitment of neutrophils and inflammatory monocytes in the lungs and lower 

cytokine and chemokine levels (Gralinski et al., 2018).  

Taken together, the available data suggest that complement is activated in highly 

pathogenic coronavirus infections and contributes to the development of ALI that has 

been observed in experimental models and in patients. In the following sections, we 

will discuss complement-mediated microvascular injury in COVID-19 patients, 

complement genetics as a potential clue to race differences in COVID-19 severity, 

options to target complement in COVID-19 patients with atypical ARDS and TMA and 

potential intersection of complement with other inflammatory pathways, offering the 

opportunity for concurrent interventions.  

 

Complement-associated microvascular injury in severely ill COVID-19 patients  

It is currently unknown, why some patients with SARS-CoV-2 infection develop mild 

symptoms while others progress to severe COVID-19 illness and multisystem organ 
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failure with high mortality rates. It is also unknown, why some patient populations, 

especially African Americans, are at higher risk to develop severe complications in 

response to SARS-CoV-2 infection. Recent autopsy data from New Orleans in four 

African American patients who succumbed to COVID-19 infection demonstrated 

diffuse alveolar damage and TMA associated with foci of alveolar hemorrhage in the 

lungs (Fox, Akmatbekov, Harbert, Li, Quincy Brown & Vander Heide, 2020). One of 

the cases had extensive fibrin with degenerated neutrophils within the alveoli possibly 

representing neutrophil extracellular traps (NETs). RNA imaging in available samples 

demonstrated multinucleated cells within alveolar spaces with abundant RNA, likely 

representing virally infected cells similar to what was previously reported in a post-

mortem case from China (Xu et al., 2020). The most significant gross cardiac finding 

was cardiomegaly with right ventricular dilatation in all patients without evidence of 

myocarditis. Elevated B-type natriuretic peptide associated with right ventricular 

dilatation was documented at least in one case. The authors considered these findings 

consistent with recent observations by Chen et al who hypothesized that pericytes 

may be infected by the SARS-CoV-2 virus and cause capillary endothelial cell 

microvascular dysfunction eventually causing individual cardiac cell necrosis (Chen, 

Li, Chen, Feng & Xiong, 2020). There were no documented secondary bacterial of 

fungal infections, although all patients received antimicrobials during critical illness. 

Based on these findings, the authors concluded that effective therapy for these 

patients should include targeted therapy for TMA in addition to virus directed therapies. 

Pulmonary abnormalities in severely affected patients are largely restricted to the 

alveolar capillaries, presenting as TMA with some evidence of viral cytopathic changes 

in alveolar lining. It is known that the virus uses the ACE2 receptor expressed by 

pneumocytes in the epithelial alveolar lining to infect the host and causing lung injury. 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4890
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However, since ACE2 receptors are also widely expressed on vascular endothelial 

cells, multiple organs can be affected (Ou et al., 2020). 

Recent studies showed complement-associated microvascular injury and thrombosis 

in critically ill SARS-CoV-2-infected patients. These studies documented extensive 

deposits of the terminal complement complex C5b-9, C4d and MASP2 in small vessels 

of affected organs (Fox, Akmatbekov, Harbert, Li, Quincy Brown & Vander Heide, 

2020; Magro et al., 2020).  Co-localization of complement components C5b-9 and C4 

with SARS-CoV-2 S protein indicated viral invasion of vascular endothelial cells, which 

also had been demonstrated by electron microscopy showing viral inclusion structures 

in vascular endothelial cells in lungs, heart, kidney, gastrointestinal tract and the skin 

(Magro et al., 2020). A recent study from Wuhan identified strong staining for MBL, 

MASP-2, C4a, C3b and C5b-9 in type I and type II alveolar epithelial cells, 

inflammatory cells, pneumocytes, and even in exudates in alveolar spaces with 

necrotic cell debris (Gao et al., 2020). There is potential interaction of complement 

with coagulation pathways resulting in acutely progressive microthrombosis with fibrin 

deposition and highly elevated D-dimers (Figure 2) (Ekdahl et al., 2016). Regardless 

of the originating insult leading to TMA, complement-mediated vascular endothelial 

injury may respond to complement-modulating therapies and offers the opportunity to 

adopt insights regarding disease mechanisms and therapeutic interventions from 

TMAs of other origin to COVID-19.  

 

Complement genetics as a potential clue to race differences in COVID-19 

severity  

One of the current uncertainties in COVID-19 infection is the racial difference in clinical 

presentations in patients developing severe illness. As outlined above, highly 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6547
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6547
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pathogenic coronaviruses are recognized by MBL. Several polymorphisms have been 

described for MBL in exon 1 at codon positions 52, 54, and 57 (Steffensen, Thiel, 

Varming, Jersild & Jensenius, 2000). The A allele can be distinguished from R52C, 

G54D, and G57E polymorphisms described as D, B and C alleles (Garred, Larsen, 

Seyfarth, Fujita & Madsen, 2006). These polymorphisms in exon 1 together with those 

in the promoter region profoundly affect circulating levels of MBL (Madsen et al., 

1995). Importantly, MBL polymorphisms have been associated with fatal outcome in 

patients with sepsis, SIRS (Garred, J, Quist, Taaning & Madsen, 2003; Hellemann et 

al., 2007) and ARDS (Gong, Zhou, Williams, Thompson, Pothier & Christiani, 2007). 

Also, some (Ip et al., 2005; Tu et al., 2015; Zhang et al., 2005) but not all (Yuan et al., 

2005) studies found a significant association between MBL codon variants in exon 1 

and the risk of severe SARS-CoV infection. Thus, polymorphisms in exon 1 and/or the 

promoter region of MBL may define the extent of complement activation in COVID-19 

patients (Figure 3). In support of this view, strong differences have been observed 

between haplotype frequencies in Asians, Caucasians, Hispanic and African 

Americans (Garred, Larsen, Seyfarth, Fujita & Madsen, 2006). Intriguingly, the G54D 

polymorphism is extremely rare in West Africa but can be found at higher frequencies 

in Caucasian, Asians and indigenous South Americans, respectively. In contrast, the 

C allele is more frequent in sub-Saharan Africa but rare among Caucasians. The D 

allele is largely restricted to North Africans and Caucasians. It has been speculated 

that environmental pressures such as a tuberculosis infections could account for the 

fact that almost 60% of the sub-Saharan population contains the C allele (Bernig, 

Taylor, Foster, Staats, Yeager & Chanock, 2004). In support of this view, a protective 

association has been described for the C allele and tuberculosis infection with M. 
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africanum (Thye et al., 2011). Thus, racial differences in MBL-mediated virus sensing 

may lead to different complement activation in COVID-19.  

In addition to MBL, complement genetics studies in hematopoietic stem cell 

transplantation (HSCT) recipients provide evidence for racial disparities in 

predisposition to develop TMA and risk of mortality in response to transplantation. 

These findings may explain the higher mortality seen in African Americans with 

COVID-19 infection. A previous large HSCT registry report described inferior survival 

in African Americans after unrelated donor HSCT, but it was unable to attribute 

reduced outcomes to risk factors such as HLA-matching and socioeconomic status 

(Baker et al., 2009). A prospective study examining genetic predisposition for 

transplant-associated thrombotic microangiopathy (TA-TMA) in HSCT recipients 

demonstrated that 65% of patients with TA-TMA had genetic variants in at least one 

complement gene as compared with 9% of patients without TA-TMA (P < .0001) using 

a hypothesis-driven 17 gene panel including the complement factors C3, Factor B 

(FB), C5, FP, FD, FI,  FH, FH-related (FHR)1, FHR3, FHR4, FHR5, decay accelerating 

factor (DAF/CD55), CD59, membrane cofactor protein (MBP/CD46), C4BPA. (Jodele 

et al., 2016c). Importantly, many of the complement genes belong to complement 

regulators that either control the amplification of the cascade at the level of C3, i.e. 

FH, CD55, CD46, FI or fuel the amplification loop (FB, FP, FD).  

Complement gene variants were increased in patients of all races with TA-TMA, but 

African Americans had more variants than Caucasians. While the FD variant 

(c.357116C.A) was detected only in African American patients with TMA, it was mainly 

the number of variants occurring in individuals with TA-TMA and not a particular gene 

variant that was significantly associated with TMA and disease severity. Variants in ≥3 

genes were identified only in African Americans with TA-TMA and were associated 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2339
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2339
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2842
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with very high mortality after HSCT (71%) and strong complement activation (Jodele 

et al., 2014). The finding of multiple variants occurring at high frequency in persons of 

African descent associated with strong complement activation suggests a selective 

benefit of strong complement activation in Africans as a defense mechanism to combat 

pathogens like Neisseria meningitides, a prevalent cause of mortality in endemic areas 

of Africa (African meningitis belt). Clearly, SNPs in C3 (Adriani et al., 2013) and FH 

have been associated with susceptibility (Davila et al., 2010) to this pathogen.  

The homeostasis of complement is controlled by an equilibrium between activation 

and control. Dysregulation of complement activation at the level of C3 through loss- or 

gain-of function mutations of regulators or gain of function mutations in activator 

proteins results in uncontrolled complement activation and inflammation as seen in 

many inflammatory conditions including HSCT-TMA (Figure 3). The combination of 

several complement gene polymorphisms, in particular in C3, FH and FB has been 

found to determine systemic complement activity and the susceptibility to AP-driven 

diseases (Heurich et al., 2011; Paun et al., 2016). Thus, the available data from HSCT-

TMA suggest that African American with multiple variations in complement genes react 

with stronger complement activation in response to infection with highly pathogenic 

coronaviruses including SARS-COV-2 resulting in uncontrolled pulmonary tissue 

inflammation and complement deposition in several organs. 

In support of this view, we found at least one complement gene variant in 32% of 50 

African American and 50 Caucasian children. The frequency of gene variants differed 

markedly by race with 50% of African American children having at least one gene 

variant, compared to only 14% of Caucasian children although the overall variant 

frequencies were somewhat lower than those reported in HSCT recipients (Jodele, 

Zhang, Dandoy, Myers, Lane & Davies, 2017).  
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Based on these observations, it will be important to examine genetic variants of 

complement proteins in patients infected with SARS-CoV-2 and to correlate such 

variants with disease severity. Such data might help to predict the risk to develop virus-

associated TMA.  

 

Complement therapy in COVID-19 patients 

Multiple teams around the world are striving to identify effective therapies for COVID-

19. SARS-CoV-2 preventive measures aim to develop an effective vaccine. Potential 

therapeutic approaches include different strategies of anti-viral medications and virus-

specific T cells that have high potential for being effective in the future. The clinical 

appearance of severely-ill COVID-19 patients with atypical ARDS and TMA and the 

association of this clinical phenotype with marked complement activation in the 

circulation  and in the lung (Gao et al., 2020; Lipworth, Chan, Lipworth & RuiWen Kuo, 

2020; Magro et al., 2020) suggests that complement may also serve as a target in 

COVID-19 patients. Encouraging first data have been reported for severely ill COVID-

19 subjects, who were either treated with a C3 antagonist (Mastaglio et al., 2020), C5- 

or C5a-blocking antibodies (Diurno et al., 2020; Gao et al., 2020). These approaches 

resulted in quick clinical improvement. In this section, we will discuss strategies to 

target complement at distinct levels. In particular, we will take into account clinical 

experience obtained with C5 targeting in different complement-mediated TMAs to 

prevent acute mortality from atypical ARDS and/or multiple organ failure in COVID-19-

affected individuals.  
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Complement pathways as potential targets 

The available data suggest that the LP and the CP are the two major complement 

pathways activated in response to SARS-CoV-2. MBL, collectin 10 and -11 as well as 

the ficolins 1-3 function as soluble sensors of the LP (Garred et al., 2016). They 

interact with MASP-1 and MASP-2 that act in concert to cleave C4 and C2 and form 

the C3 convertase C4b2b, which proteolytically cleaves C3 into C3a and C3b (Figure 

1). MBL comprises multiple carbohydrate recognition domains that can bind to the 

high-mannose structure of the SARS-CoV S protein (Ip et al., 2005). In particular, the 

N-linked glycosylation site N330 on the S protein seems to be critical for MBL 

interaction. Further, MBL directly inhibited SARS-CoV-mediated infection in vitro 

(Zhou et al., 2010). In addition to the S protein, a recent report uncovered the 

interaction of LP MASP-2 with a highly conserved motif in the N protein of SARS-CoV, 

SARS-CoV-2 and MERS-CoV. Intriguingly, this interaction not only potentiated MASP-

2-driven activation of the LP but aggravated LPS-induced pneumonia in a MASP-2-

dependent way (Gao et al., 2020). Given that the N protein is one of the most abundant 

structural proteins in the serum of patients infected by SARS-CoV (Che et al., 2004; 

Chen et al., 2005; Guan, Chen, Foo, Tan, Goh & Wee, 2004) its interaction with MASP-

2 could serve as an important amplifier of LP activation in highly pathogenic 

coronavirus infection. Thus, the available data point toward the LP as an important 

target in these virus infections.  

C1q is the sensor molecule of the CP that recognizes multiple conserved molecular 

patterns including IgM or IgG hexamer molecules that have bound their cognate 

antigen (Diebolder et al., 2014). Similar to MASP-1 and MASP-2, the serine proteases 

C1r and C1s form a complex with IgG/IgM-bound C1q to cleave C4 and C2 and 

generate the C4b2b convertase, eventually cleaving C3 into C3a and C3b (Figure 1). 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3121&familyId=1034&familyType=OTHER
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5019
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2334
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2335
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Within the first week after symptoms, COVID-19 infection results in the production of 

S protein-specific IgG/IgM antibodies as a target structure for C1q (Wolfel et al., 2020). 

A recent study from Wuhan shows that during the first 5 days after clinical onset, 

already 30-40% of the infected individuals have generated IgM or IgG antibodies 

directed against the S or N proteins of SARS-CoV-2, with a slightly higher frequency 

of antibodies against the S protein (Liu et al., 2020). After 5 weeks, all of the 214 tested 

patients showed IgG seroconversion. These data suggest that the seroconversion is 

somewhat quicker than what has been observed with SARS-CoV (Peiris et al., 2003). 

Taken together, CP activation by IgM and IgG antibodies directed against the S and 

N proteins of SARS-CoV and SARS-CoV-2 serves as second mechanism of 

complement activation in addition to the initial virus sensing by the MBL and LP 

activation (Figure 1).  

The C3 convertase C4b2b, which is assembled in response to LP and CP activation 

generates the AT C3a from C3, which can degranulate basophils and mast cells 

leading to histamine release through activation of its cognate C3aR (el-Lati, Dahinden 

& Church, 1994; Kretzschmar et al., 1993). C3aR expression is triggered in neutrophils 

upon LPS exposure and contributes to NETosis (Guglietta et al., 2016). Further, C3a 

induces aggregation and serotonin release from platelets, regulates secretion of IL-6 

and TNF-α from B-cells and monocytes and leads to the production of IL-8 by an 

epithelial cell line (Fischer & Hugli, 1997; Fischer, Jagels & Hugli, 1999; Fukuoka & 

Hugli, 1988). Intracellularly, C3a plays an important role in activating the NLRP3-

inflammasome in human monocytes (Asgari et al., 2013). Taken together, C3a 

promotes a pro-inflammatory environment. The C3 convertase also serves as the 

nucleus for the C5 convertase, when C3b molecules form a complex with C4b2b 

resulting in C4b2b3b, the C5 convertase of the LP and the CP, which cleaves C5 into 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1204
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=31
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1770
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1770
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the AT C5a and C5b (Figure 1) (Ekdahl et al., 2019). Similar to C3a and in concert 

with C3a, C5a can drive a pro-inflammatory environment through its strong 

chemotactic properties on neutrophils, monocytes, eosinophils, basophils, mast cell 

and dendritic cells (DC) and its potency to activate such cells to release ROS, 

lysosomal enzymes as well as pro-inflammatory cytokines such as IL-1, TNF-, IL-6 

and chemokines of the CC and CXC families (Figure 2). C5a also drives the activation 

and differentiation of T cells through DC maturation downstream of C5aR1 (Antoniou 

et al., 2020; Weaver et al., 2010). Also, C5a controls histamine-induced increase in 

vasopermeability (Kordowski et al., 2019) and drives the production of metabolites of 

the arachidonic acid lipoxygenase and cyclooxygenase pathways resulting in 

increased production of leukotriene B4 (LTB4) or prostaglandin E2, both of which 

increase vasopermeability (Karasu, Nilsson, Kohl, Lambris & Huber-Lang, 2019; Klos, 

Tenner, Johswich, Ager, Reis & Kohl, 2009).  

Importantly, such increased vasopermeability of the alveolar-capillary interface has 

been observed in infections with highly pathogenic respiratory viruses including H5N1 

influenza, SARS-CoV and MERS-CoV. It is associated with massive recruitment and 

activation of neutrophils resulting in tremendous production of proinflammatory 

cytokines and chemokines including IL-1, IL-6, IFN-,  IL-8, CXCL10 and CCL2, 

eventually leading to the development of ALI/ARDS (Jiang et al., 2019; Jiang et al., 

2018). In experimental models as well as in patients infected with influenza (Ohta, 

Torii, Imai, Kimura, Okada & Ito, 2011), SARS-CoV (Gralinski et al., 2018), MERS-

CoV (Jiang et al., 2018) or SARS-CoV-2 (Gao et al., 2020; Magro et al., 2020), 

increased blood levels and/or lung deposits of complement activation products have 

been described.   

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=32
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Taken together, the picture emerges that highly pathogenic coronaviruses activate 

complement by the LP and CP. This activation drives the generation of huge amounts 

of the highly proinflammatory cleavage products C3a and C5a, when complement 

activation is not sufficiently controlled by complement regulator proteins (Figure 3). 

Further, TMA results in C3 and C5 cleavage by non-canonical pathways through 

serine proteases located in the intracellular space of in the vasculature that exert 

considerable enzyme activity (Figure 2) (Ekdahl et al., 2016). Below, we will discuss 

strategies to prevent the initiation of LP and CP, to attenuate convertase-mediated 

amplification and to inhibit the effector functions of C5a/C5aR1 axis activation.  

 

Inhibition of lectin pathway and classical pathway initiation 

Targeting the lectin pathway  

Within the LP, either the sensor molecules MBL, the ficolins 1-3, the collectins 10 and 

11 or the serine proteases MASP1 and MASP-2 could serve as potential targets. At 

this point, no strategies have been developed to target the sensor molecules. 

However, Omeros has developed the MASP-2 targeting human antibody narsoplimab 

(OMS721) that is currently used in phase III trials for HSCT-TMA, IgA nephropathy 

and atypical hemolytic syndrome (aHUS) and in a phase II trial for lupus and other 

renal diseases (Ricklin, Mastellos, Reis & Lambris, 2018). For TMA, the FDA has 

granted narsoplimab breakthrough designation in patients with persistent TMA as well 

as orphan drug designation for the inhibition of complement-mediated TMAs and the 

treatment of HSCT-TMA. Given that narsoplimab is already in clinical trials for 

diseases in which TMA is a critical disease driver, it might be worth to consider this 

approach for severe cases of COVID-19 infection (Figure 1). 
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In addition to MASP-2, a C2-blocking antibody (PRO-02) has been developed by 

Prothix/Broteio to inhibit the formation of the C4b2b convertase of the LP and the CP 

and is tested as potential therapeutic approach for ischemia reperfusion injury-

mediated disorders and autoimmune diseases (Borosss, Yildiz, Simons, Boon & Hack, 

2016). 

Targeting the classical pathway 

Potential targets specific for the CP are either the pattern recognition molecule C1q or 

the serine proteases C1r and C1s. Antibodies against C1q have been generated by 

Annexon, either as a complete monoclonal antibody (ANX005) or as a Fab fragment 

(ANX009), both of which have completed Phase 1b trials for Guillain-Barre Syndrome 

or glaucoma showing full inhibition of CP activation. The FDA has granted ANX005 

Fast Track and Orphan drug designation for the treatment of Guillain-Barre Syndrome. 

Antibodies are also available that are directed against C1s. Based on the mouse 

antibody TNT003 (Shi et al., 2014), the Sanofi subsidiary Bioverativ (a Sanofi 

company) has developed the humanized antibody sutimlimab (TNT009), which is 

currently tested in a phase III trial for cold agglutinin disease (CAD), a subtype of 

autoimmune hemolytic anemia and in a phase I trial for idiopathic thrombocytopenic 

purpura. In a small cohort of 10 patients suffering from CAD, sutimlimab was found to 

be safe, well-tolerated and rapidly stopped CP-mediated hemolysis (Jager et al., 

2019). In December 2019, Sanofi has reported first results from the phase III trial 

showing that sutimlimab inhibited hemolysis and improved anemia and fatigue in CAD 

patients shortly after treatment (Mastellos, Ricklin & Lambris, 2019). Finally, plasma 

protease C1 inhibitor (C1INH) controls the activity of C1s and has been on the market 

for more than 20 years for the treatment of hereditary angioedema. The problem with 

C1INH is that it is not only targeting C1s but also proteases of the coagulation-, kinin- 
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and fibrinolysis-pathways (Levi, Cohn & Zeerleder, 2019). Thus, for selective and 

tailored targeting of the CP C1INH is not on option.  

In summary, antibodies are available that specifically target the LP or the CP and are 

already in phase III trials. Given that both virus-driven LP and adaptive immune 

response-mediated CP activation by virus-specific IgG and IgM antibodies will activate 

the complement system (Figure 1), it might not be sufficient to target the LP only.  

 

Targeting complement amplification at the level of C3  

As aptly put by the Lambris lab, C3 serves as the "swiss army-knife" of the complement 

proteins. C3b generated from C3 in response to CP, LP or AP activation can amplify 

the initial complement activation by either pathway, when it forms the C3bB complex 

that can be cleaved by the serine protease FD, resulting in the self-amplifying C3bBb 

convertase (Ricklin, Reis, Mastellos, Gros & Lambris, 2016). This amplification loop 

will mediate the cleavage of many molecules of C3 when not appropriately controlled 

by complement regulator proteins (Figures 1 and 3). The available data suggest that 

such control by complement inhibitors of the regulator of complement activation (RCA) 

family is disturbed in patients developing ARDS and TMA following infection with 

highly pathogenic coronaviruses, in particular in African Americans (Figure 3). All of 

these RCA proteins harbor complement control protein domains. Some of them are 

membrane-bound such as complement receptor 1 (CR1/CD35), MCP/CD46, and 

DAF/CD55, whereas other are found in the circulation (FH, C4 binding protein 

(C4BP)). Mechanistically, the RCA proteins either destabilize the C3 convertases or 

serve as co-factors for FI-mediated degradation of C3b to iC3b and C3dg, which no 

longer contribute to the formation of the amplification loop. As implied by the name, 



 
This article is protected by copyright. All rights reserved. 

DAF/CD55 accelerates the decay of the convertase, whereas CD46 mediates 

degradation of C3b. CR1, FH and C4BP exert both functions.  

Several compounds have been developed that inhibit the C3 convertase, either by 

targeting molecules that are critical for assembly (FB, FD, MASP-3) or by 

destabilization of the convertase complex and degradation of C3b (CR1, FH). These 

compounds have recently been discussed in detail in two excellent reviews (Mastellos, 

Ricklin & Lambris, 2019; Ricklin, Mastellos, Reis & Lambris, 2018). Prima facie, FD is 

an attractive target in COVID-19 infection, given that the proteolytic cleavage of FB by 

this serine protease is a crucial step to ignite the amplification loop. Also, plasma levels 

are relatively low, although high plasma turnover might pose a challenge. Thus, it is 

not surprising that small molecule inhibitors (Novartis, Achillion) and FD-antibodies 

(Genentech) have been generated and tested in several clinical trials. Also, a MASP-

3-specific antibody (OMS906) has been developed by Omeros to block the conversion 

of pro-FD to FD (Dobo et al., 2016; Hayashi et al., 2019). However, several other 

serine proteases can cleave C3 including elastase from neutrophils or proteases of 

the coagulation, the kinin and the fibrinolysis system. As the substrate specificity of 

these proteases for C3 is much lower than for their cognate substrates, the impact of 

such proteases under homeostatic conditions is probably minor. However, under pro-

thrombotic conditions such as TMA, when control systems are exhausted and 

intravascular protease inhibitor concentration is low, such proteases are likely to 

cleave C3 and drive AP activation (Ekdahl et al., 2019). In light of these consideration, 

blocking of systemic AP activation by specific targeting of FD or MASP-3 seems 

difficult in patients suffering from ALI/ARDS with TMA or multiorgan failure.  

As an alternative to FD, FB-targeting intervention has been developed by Ionis with 

Roche as a partner. They use a ligand-conjugated antisense drug to reduce the 
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production of FB, which is now in phase II trials for IgA nephropathy and age-related 

macular degeneration (AMD). At this point it is unclear, how efficient this drug would 

attenuate FB production in a severe systemic inflammatory disease state. We will only 

briefly touch molecules that destabilize the C3 convertase as clinical development of 

some of these molecules has either been discontinued (TP10 or TT30, extracellular 

variants of CR2)(Lazar et al., 2007; Risitano et al., 2012) or are still in pre-clinical 

development (mini-FH, Amyndas)(Schmidt et al., 2013).  

As an alternative approach to target C3, conversion to C3 convertase has been 

selected by the Lambris lab. They identified a peptide from a phage library, compstatin, 

that prevents the binding of C3 to the assembled convertase independent of its origin 

(Sahu, Kay & Lambris, 1996). Through several round of iteration, the affinity of this 

compound for C3 has been increased by more than 3 orders of magnitude as 

compared with the original compound, eventually leading to CP40. This molecule 

served as a drug candidate for AMY-101 (Amyndas), which now in phase II trials for 

periodontal disease and C3 glomerulopathy (Mastellos, Ricklin & Lambris, 2019). This 

approach of direct C3 targeting in COVID-19 is attractive, as it is supposed to block 

virus-induced LP and CP activation as well as LP/CP-driven activation of the 

amplification loop at the bottleneck of all pathways (Figure 1). However, C3 is one of 

the most abundant plasms proteins with a concentration in the range of 1.5 mg/ml. 

Thus, high amounts of inhibitor are required to efficiently reduce circulating C3. The 

high turnover of C3 under strong inflammatory conditions adds to this problem. Finally, 

it remains to be determined whether compstatin derivatives would also prevent the 

cleavage of C3 by all circulating or cell derived serine proteases as outlined above. 

Despite these challenges, direct C3 targeting appears an attractive target in severe 

infection with highly pathogenic coronaviruses. In support of this view, treatment of a 
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patient suffering from severe ARDS in response to COVID-19 infection with AMY-101 

resulted in a favorable disease course (Mastaglio et al., 2020). It will be important to 

further evaluate the benefit of C3 targeting with AMY-101 in in a large cohort of COVID-

19 patients.  

The list of compounds that specifically target the interaction of the small cleavage 

product of C3, C3a with its C3aR is short. The selective nonpeptide C3aR antagonist 

SB290157 has been generated almost 20 years ago (Ames et al., 2001). It has been 

used with different success in several preclinical models to target C3aR. However, no 

clinical development has been pursued. During the past 10 years, the Fairlie lab has 

developed sophisticated approaches to design small molecule agonist and 

antagonists from different proteins including C3a (Reid et al., 2013). In this context, 

they have recently reported on the new compound JR14a, a very potent C3aR 

antagonist that is 100-fold more potent than SB290157 (Rowley et al., 2020). This 

molecule awaits preclinical testing in animal models of inflammation.  

 

Targeting the terminal pathway  

Lessons learned from targeting C5 in TA-TMA 

The generation of the terminal complement complex (C5b-9, MAC) is initiated by the 

cleavage of C5 by the C5 convertase resulting in the generation of C5b and C5a. Once 

C5b is formed, C6 can associate to a labile binding site in C5b. Next, C7 can associate, 

followed by binding of the heterotrimeric C8 which is critical for membrane 

insertion. The C5b8 complex serves as the receptor for C9 and drives its 

oligomerization, which is critical for membrane perforation, target cell lysis and 

endothelial cell damage (Hadders et al., 2012). The MAC promotes inflammation by 

inducing the expression of adhesion molecules and the release of chemokines and 
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platelet activating factor, which can ultimately lead to dysregulation of coagulation 

resulting in microvascular thrombosis. The ability of MAC to upregulate expression of 

leucocyte adhesion molecules on endothelial cells might also contribute to platelet 

localization and adhesion as well as increased leucocyte adhesion and subsequent 

cytokine and growth factor production (Dobrina et al., 2002). 

Patients with TMA produce high amounts of the C5 cleavage products C5a and C5b 

and subsequently C5b-9, due to enhanced LP, CP or AP activation caused by 

defective complement regulation and/or excess activation (Figure 3).  Elevated levels 

of circulating sC5b-9 can be found in the blood of patients with complement-mediated 

TMAs. High concentration of sub-lytic MAC in target cells may have a detrimental 

effect in a variety of tissues including the kidney, lung and the central nervous system. 

Selective inhibition of C5 cleavage by C5-specific antibodies is one of the options to 

inhibit formation of C5b-9/MAC that has been successfully applied to clinical practice 

(Figure 1).  

Eculizumab (Soliris, Alexion Pharmaceuticals) is a humanized murine monoclonal 

antibody against C5, which prevents C5 cleavage and the generation of C5b-9/MAC 

by any of the three complement pathways.  Eculizumab was first approved for the 

treatment of paroxysmal nocturnal hemoglobinuria (PNH). The efficacy and safety of 

eculizumab for treating aHUS were demonstrated in prospective clinical trials and 

adopted for therapy in high risk TA-TMA patients (Legendre et al., 2013).  Eculizumab 

(off-label) has been successfully used in HSCT recipients with severe TA-TMA and is 

one of the first complement blocking agents used to treat COVID-19 patients.  

Complement mediated TA-TMA occurring in HSCT recipients very closely resembles 

histologic and clinical TMA presentation in subjects with COVID-19 suffering from a 

hyperinflammatory syndrome. The hyperinflammatory response in 
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immunocompromised individuals with TA-TMA is often triggered by viral pathogens 

such as the BK polyoma virus (Laskin et al., 2019) influenza/parainfluenza virus 

(Bitzan & Zieg, 2018), adenovirus (Yabe et al., 2005) or HHV-6 (Belford, Myles, Magill, 

Wang, Myhand & Waselenko, 2004). It is associated with very high systemic 

complement activation as measured by elevated blood sC5b-9 and can lead to multi-

organ injury resembling clinical and autopsy reports in SARS-CoV-2. Untreated 

patients with complement mediated TA-TMA have >80% mortality due to multi-organ 

failure. Eculizumab treatment significantly improved survival as compared with 

untreated cohorts (66% vs 17% 1 y post-transplant survival) (Jodele et al., 2020a; 

Jodele et al., 2014).  In HSCT recipients with TA-TMA pre-therapy, plasma sC5b-9 

was associated with the risk of dying from TMA. Plasma sC5b-9 also correlated with 

increased eculizumab drug clearance and was incorporated as one variable in a 

pharmacokinetic/pharmacodynamic eculizumab dosing algorithm for severely ill 

patients designed to achieve and maintain therapeutic eculizumab levels (>100 µg/ml) 

for prompt control of TA-TMA (Jodele et al., 2016b).  

 

C5 targeting with eculizumab in COVID-19 patients 

Due to the immediate need for clinical strategies to manage vigorous complement 

activation in SARS-CoV-2 infected patients, we may adopt some of the available 

knowledge from complement-mediated TA-TMA in HSCT recipients.  Eculizumab can 

be considered in COVID-19 population due to significant amount of knowledge using 

this drug in critically ill patients like HSCT recipients with TA-TMA, the acceptable 

toxicity profile, and the lack of interference with T-cell mediated anti-viral responses 

(Jodele et al., 2020a). Importantly, a first case study which applied eculizumab to 

COVID-19 patients suffering from ARDS or severe pneumonia resulted in successful 
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recovery of all patients with reduction in inflammation (Diurno et al., 2020). Four 

subjects with confirmed severe COVID-19-associated pneumonia with oxygen 

requirement and radiologic evidence of bilateral pneumonia were offered eculizumab. 

Despite presenting with a rapidly worsening respiratory function, all patients showed 

a marked clinical improvement within the first 48 hours after the first eculizumab dose 

with a median therapy time of 12.8 days to disease resolution. This first encouraging 

data warrant further evaluation in a larger cohort of COVID-19 patients. Last year 

Alexion launched a variant of eculizumab, i.e. ravulizumab, with longer plasma 

residence than eculizumab, allowing a less frequent dosing interval of 8 weeks 

(Kulasekararaj et al., 2019; Lee et al., 2019). Recently, the company announced to 

conduct a phase 3 open-label randomized and controlled study to determine the safety 

and efficacy of ravulizumab in COVID-19 patients with severe pneumonia, ALI or 

ARDS (Alexion, 2020).  

Monitoring blood sC5b-9 can potentially serve as a helpful surrogate marker for 

enhanced C5 production in COVID-19 patients, as the turnover of C5 will determine 

the clearance of eculizumab. In a high inflammatory state, as can be seen in severely 

ill HSCT recipients with TA-TMA or COVID-19 patients, there is an acute phase 

response of the liver with massive C5 production and additional C5 production by 

activated circulating inflammatory cells and injured endothelial cells. Under such 

conditions, there are more target C5 molecules generated and more eculizumab is 

required as it forms immune complexes with the increased number of C5 molecules.  

Eculizumab serum concentration, sC5b-9 and CH50 monitoring tests are clinically 

available that can be adopted for pharmacokinetic/pharmacodynamic-guided 

eculizumab dosing in COVID-19 patients as described in HSCT population (Jodele et 

al., 2016b). All patients receiving complement blockers should additionally receive 
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antimicrobial prophylaxis appropriate for the prevention of meningococcal infection, as 

the available meningococcal vaccine does not provide adequate protection (Bouts, 

Monnens, Davin, Struijk & Spanjaard, 2011; Struijk, Bouts, Rijkers, Kuin, ten Berge & 

Bemelman, 2013).  Complement blockade using eculizumab with appropriate 

antimicrobial prophylaxis was shown to be safe in immunocompromised HSCT 

recipients (Jodele et al., 2016a).  

 

Alternative strategies to target C5 

Genetic C5 variants have been identified that result in poor binding of eculizumab and 

treatment failure in patients suffering from PNH (Nishimura et al., 2014). In addition to 

eculizumab, several other C5-targeting antibodies have been developed by Roche, 

Novartis and Regeneron. For example, Roche and Chugai developed 

SKY/RO7112689, which works in patients with the C5 variant p.Arg885His and exerts 

long-lasting C5 inhibition properties (Fukuzawa et al., 2017). Also, Novartis (LFG316) 

and Regeneron (puzelimab/REGN3918) generated anti-C5 antibodies that are 

currently in clinical development.   

The recombinant small protein nomacopan (Coversin, Akari therapeutics) from the 

Ornithodros moubata tick is another molecule that targets C5 and prevents the release 

of C5a and formation of C5b–9, although in a different way than eculizumab (Jore et 

al., 2016). In addition to C5, it also targets the leukotriene LTB4. Nomacopan was 

shown to disrupt cell trafficking (in particular that of neutrophils) (Figure 2) and the 

release of proinflammatory cytokines in several experimental models of ARDS and 

sepsis including those induced by viral infections like influenza H1N1(Garcia et al., 

2013). It is likely that C5a and LTB4 together account for many of the pro-inflammatory 

effects associated with pulmonary inflammation and TMA (Figure 2) as observed in 
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COVID-19 patients with severe courses. Nomacopan is administered as continues 

subcutaneous infusion, which will potentially provide continuous complement 

blockade in the circulation. It demonstrated a promising complement modulating 

response in TA-TMA and is now being examined in phase III clinical trials (Goodship 

et al., 2017).  

Although terminal complement blockade significantly improved TA-TMA therapy, a 

more tailored approach targeting C5a or C5aR1 might be sufficient to cope with the 

deleterious, pro-inflammatory effects of overactivated complement.  

 

Blockade of the C5a/C5aR1 axis 

C5a is generated in response to C5 cleavage by canonical and non-canonical 

complement activation. It exerts many of its pro-inflammatory properties through 

engagement of its cognate GPCR C5aR1. It also binds to C5aR2, which is uncoupled 

from G-proteins (Karasu, Nilsson, Kohl, Lambris & Huber-Lang, 2019; Klos, Tenner, 

Johswich, Ager, Reis & Kohl, 2009). At this point, most strategies to target C5a-

mediated effects focus on C5aR1 (Figure 1). The most advanced approach uses a 

small molecule inhibitor of C5aR1, avacopan (CCX168), developed by ChemoCentryx 

that is orally available. In a phase II trial for ANCA-associated vasculitis, efficacy, 

safety and a steroid-sparing effect (Jayne et al., 2017) has been demonstrated for 

avacopan. These findings were recently confirmed by first data released from a phase 

III trial, which even suggested superiority to standard glucocorticoid therapy 

(Chemocentryx, 2019). Innate Pharma has developed the fully human anti-C5aR 

antibody advoralimab (IPH-5401), which is currently tested in patients with advanced 

solid tumors in a phase I trial together with the PD-L1 antibody durvalumab 

(AstraZeneca). Additional C5aR1 antagonists have been developed, which are still in 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=33
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9450
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7693
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7985


 
This article is protected by copyright. All rights reserved. 

the preclinical stage including an allosteric inhibitor of C5aR1 (Dompe), or the cyclic 

peptide ALS-205 (Alsonex) based on PMX-53, a non-competitive inhibitor of C5aR1, 

which has been successfully used in several animal models of inflammatory diseases 

to target C5aR1  (Hawksworth, Li, Coulthard, Wolvetang & Woodruff, 2017). Finally, 

the C5a mutein A871-73 has been developed, primarily selected from a phage-display 

library, that simultaneously targets C5aR1 and C5aR2 (Heller et al., 1999). The 

antagonistic properties rely on an amino acid replacement at position 69 of C5a with 

a positively charged amino acid (Otto et al., 2004). This molecule has been shown in 

a preclinical model of sepsis to be superior to isolated C5aR1 targeting (Rittirsch et 

al., 2008).  

As alternative approach, InflaRx has developed the monoclonal antibody IFX-1 that 

specifically targets hC5a (Figure 1). This antibody, which has been licensed to 

Staidson Biopharmaceutics (BDB-001) is currently used in a multicenter, randomized 

double blind placebo-controlled trial in mild COVID- 19 patients and an open label two-

cohort clinical trial in patients with severe and critical COVID-19. First results were 

recently released showing a promising curative effect in two severe COVID-19 patients 

with moderate ARDS or pneumonia (Gao et al., 2020). InflaRx has also initiated a 

phase II study in Europe with IFX-1 in COVID-19 patients with severely progressed 

pneumonia (InflaRx, 2020).  

The available preclinical data and the few clinical data point toward a key role for C5a 

in complement-driven ARDS and TMA development in response to highly pathogenic 

coronavirus infection. The strong differences between C5a serum levels of COVID-19 

patients with moderate and severe disease (Gao et al., 2020) indicate that longitudinal 

monitoring of C5a serum levels in patients with moderate disease might help to identify 
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and stratify patients at risk to develop severe lung injury and TMA. Targeting C5a or 

C5aR1 might be superior to C5 targeting approaches as it is a more tailored approach 

that leaves the formation of the MAC intact, which is critical to combat infections with 

encapsulated bacteria including N. meningitidis. Also, C3-fragment mediated 

opsonization is still possible. Further, the C5a/C5aR1 axis intersects with and amplifies 

the responses of other innate immune receptors. For example, C5aR1 sets the 

threshold for IgG Fc receptor (FcR)-mediated immune cell activation, as its activation 

upregulates the expression of activating FcRs and downregulates the expression of 

inhibitory FcRIIB (Karsten & Kohl, 2012). Of note, a significant association has been 

described between a SNP in FcRIIA and the severity of SARS-CoV infection (Yuan 

et al., 2005). Thus, C5aR targeting might also reduce virus-IgG-driven immune cell 

activation by activating FcRs. 

 

Complement interaction with other inflammatory pathways and potential 

concurrent interventions 

Complement system dysregulation is one of the major pathways leading to endothelial 

injury. While complement blockade improves TMA, not all patients respond to therapy, 

prompting a search for additional targetable pathways of endothelial injury. Emerging 

data from COVID-19 patients demonstrate the interplay of multiple inflammatory 

pathways. Thus, novel personalized strategies including combination therapies might 

be required to effectively fight the hyperinflammatory storm (Figure 2) (Barnes et al., 

2020; Giamarellos-Bourboulis et al., 2020; Gloude et al., 2017; Zhao, 2020). In support 

of this view, proteomic and metabolomic profiling of sera from healthy controls, 

patients with non-severe and severe COVID-19 infection identified changes in 

complement pathways in concert with changes in platelet degranulation and 
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macrophage function as the main variables to predict progression to severe COVID-

19 disease (Shen et al., 2020). Also, the authors found a strong increase in CRP in 

severely-ill COVID-19 patients, which is a strong non-canonical activator of 

complement by the CP (Biro et al., 2007). In another systems approach, activation of 

the complement system, the kinin-kallikrein pathways and IL-6 were identified as the 

main pathways responsible for the dysregulation of inflammation in patients with 

severe COVID-19 infection (Van de Veerdonk et al., 2020). All of these pathways have 

formerly been associated with the development of TMA.  

Recent data in HSCT recipients with TA-TMA suggest a key relationship between 

complement activation and increased IFN signaling, NETs, and chemokines/cytokines 

like IL-8 and IL-6 forming an “IFN-complement loop” that can perpetuate endothelial 

injury and TMA.  Recent RNAseq data in HSCT recipients with TMA showed that IFNs 

promote expression of complement genes, such as C1Q, which initiates the classical 

complement pathway and ultimately leads to formation of the MAC/C5b-9 and 

endothelial injury presenting as TMA (Jodele et al., 2020b). Intracellular complement 

C5 production, cleavage into C5a and intracellular C5aR1 activation in response to T 

cell activation results in NLRP3 inflammasome activation, Th1 differentiation and 

production of IFN- which could fuel the inflammatory scenario and sustain endothelial 

cell damage (Arbore et al., 2016).  

Injured endothelial cells release IL-8, causing neutrophil activation and formation of 

NETs. In response, NET formation promotes complement system activation via the 

AP and FP (properdin) binding (Yuen et al., 2016). NET production can be further 

stimulated by IFN- (Gloude et al., 2017). IFN- and IFN- proteins increase 

differentiation of B cells into plasma cells that can produce anti-FH antibodies, 

preventing inhibition of the AP. NETs can activate plasmacytoid dendritic cells to 
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produce high levels of IFN-that can directly activate complement via C5b-9, resulting 

in vascular endothelial injury (Umemura et al., 2015).  

Therapeutic administration of IFNs has been shown to cause TMA (Garcia-Romo et 

al., 2011).  Viral pathogens that can trigger high IFN- production may also lead to 

development of complement mediated TMA (Zareei et al., 2019). In addition, viruses 

can directly injure endothelial cells and promote release of IFN- (An, Saenz Robles, 

Duray, Cantalupo & Pipas, 2019). Inflammatory chemokines/cytokines like IL-6, 

CXCL8/IL-8, and IFN- are also released from circulating activated T cells, NK cells, 

monocytes, and tissue macrophages as a response to viral infection, again 

contributing to TMA development.  

A better understanding of the “IFN-complement loop” provides new opportunities to 

combine therapies that might be used as personalized treatment options for defined 

patient cohorts. One clinical example is hemophagocytic lymphohistiocytosis (HLH), a 

rare clinical syndrome of excessive immune activation, characterized by signs and 

symptoms of extreme inflammation, driven mainly by IFN- and other pro-inflammatory 

cytokines with good response to emapalumab (Lounder, Bin, de Min & Jordan, 2019; 

Vallurupalli & Berliner, 2019), a human monoclonal antibody to IFN-It is approved 

for treatment of severe HLH. Patients with HLH, who simultaneously present with 

complement-mediated TMA have high incidence of multi-organ injury and poor 

outcomes. Case series in children suggest that combined inhibition of IFN- and the 

terminal complement pathway in TMA might provide faster disease control and 

recovery from organ injury than targeting either IFN- or C5 (Gloude et al., 2020). 

Given that patients with severe COVID-19 infection show massive activation of several 

inflammatory pathways, monitoring complement (C3a, C5a, sC5b-9) and IFN- 

pathway activation (CXCL9) as well as IL-6 levels in the circulation in the course of 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9295
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=837
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COVID-19 infection could have immediate clinical implications. Algorithms might be 

developed on the basis of these pathway activation patterns for patient risk 

stratification and targeted interventions using currently available drugs to halt COVID-

19 progression to multi-organ failure and improve outcome.  

 

Conclusion and future perspective 

In summary, the available data strongly support a model in which complement 

activation in the lung and in other organs is a critical host mediator of SARS-CoV-2-

induced development of atypical ARDS and TMA. We would like to propose a model 

in which strong complement activation by the LP and/or the CP occurs in patients 

suffering from atypical ARDS/TMA resulting in massive generation of C5a. 

Polymorphisms in exon 1 and/or the promoter region of MBL or in complement 

regulators may define the extent of complement activation, in particular in African 

Americans. Alternatively, and not mutually exclusive, the extent of virus-specific 

neutralizing IgG Abs generated after the first week of infection may determine the 

magnitude of complement activation. Importantly, C5a controls the threshold of IgG 

Fc receptor expression as an important mechanism of IgG-mediated innate immune 

cell activation (Karsten & Kohl, 2012). Complement activation occurs primarily in the 

lower airways but will result in the release of C5a into the circulation. Such C5a recruits 

and activates proinflammatory immune cells as a key mechanism that drives the 

“cytokine and chemokine storm” associated with fatal lung injury and TMA 

development (Figure 2). Thus, targeting C5, C5a or its primary receptor, C5aR1, 

should be considered to alleviate the proinflammatory effects, reduce lung pathology 

and increase the survival of COVID-19 patients.  
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Figure 1. SARS-CoV-2 driven complement activation and potential targets of 
the complement cascade. Several structural proteins of SARS-CoV-2 including the 
S and N proteins are recognized by MBL resulting in virus-induced activation of the 
LP. Sensing of the virus by the innate immune system leads to the activation of B 

and T cells of the adaptive immune system, and the production of virus-specific IgM 
and IgG antibodies. Such antibodies can activate the complement system by the CP. 

LP and CP activation initiate a cascade of proteolytic events resulting in the 
assembly of the C3 convertase C4b2b, eventually cleaving C3 into C3a and C3b. 

This C3b serves as the nucleus of the amplification (A) loop, which drives the 
ongoing cleavage of C3 unless controlled by complement regulator proteins. The 

emerging C3 convertase of the AP, C3bBb can form the C5 convertase C3bBb3b of 
the AP, which cleaves C5 into C5a and C5b. C5 serves as the nucleus for MAC/C5b-

9 formation. Several compounds have been generated that specifically target the 
activation of the LP at the level of the serine protease MASP-2 or the CP at the level 
of C1q and C1s. Further, compounds have been developed to inhibit the cleavage of 
C3 by either targeting molecules that build the AP C3 convertase or by protecting C3 

from C3 convertase-mediated cleavage. Downstream of C3, antibodies and 
inhibitors of C5 have been generated that protect C5 from cleavage by the C5 

convertases. Finally, antibodies or other molecules have been developed that either 
target C5a or its primary receptor, C5aR1. The potential use of the different 

complement inhibitors in COVID-19 infection is discussed in the text. 
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Figure 2. Complement effector functions leading to SARS-CoV-2-induced 
thrombotic microangiopathy (TMA) and acute lung injury (ALI).  SARS-CoV-2-
sensing by pattern recognition molecules of the LP and CP results in C5 cleavage 

and the generation of the AT C5a. Further, LP-derived MAPSs activate the 
coagulation and the kinin system to drive TMA development leading to fibrin 

formation and platelet aggregation. C5a attracts neutrophils and inflammatory 
monocytes to adhere to the vascular endothelium, release IL-8 and multiple 

inflammatory cytokines and to form NETs. Such NETs can activate complement by 
the AP and fuel the C3 amplification loop (A), when complement regulators are 

exhausted and/or when their function is reduced due to loss of function mutations. 
Also, adherent neutrophils produce LTB4 that binds to and activates its cognate 

receptor. Consequently, neutrophil transmigrate into the lung. C5a-activated 
monocytes in concert with activated neutrophils produce proinflammatory cytokines 

and chemokines that further activate the endothelium and amplify inflammation. 
Virus-induced complement activation by the LP within the lung tissue serves as an 

additional source of C5a. Such C5a activates neutrophils and inflammatory 
monocytes that were recruited to the lung as well as tissue-resident macrophages to 

produce pro-inflammatory chemokines and cytokines, eventually driving tissue 
damage leading to ALI and ARDS. 
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Figure 3. Impact of inherited gain- or loss-of function mutations in complement 
activator or regulator proteins on complement pathway activation. The degree 
of complement activation in response to infection is defined by the strength of the 

activation by complement activator molecules, the formation of the critical AP 
amplification loop and the potency of the system to balance this activation by 

complement regulator molecules. (A) Balanced complement activation occurs, when 
sensing of the SARS-CoV-2 virus by MBL or virus-specific antibodies is appropriately 

controlled by complement regulator proteins resulting in innate immunity-guided 
activation of adaptive immune responses, eventually leading to virus elimination. (B) 

Polymorphisms in a set of complement proteins, either associated with a gain-of 
function in complement activators or loss-of function in complement regulators, or 
both, can aggregate to effects leading to complement overactivation as has been 

observed in African Americans with HSCT-TMA. In case of SARS-CoV-2 infection, 
such aggregation of inherited variants of complement proteins may lead to humoral 

and cellular hyperinflammation, associated with virus persistence and strong 
immunopathology causing TMA, ALI and/or ARDS. 
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Table 1 
 
Abbreviations: 
 
aHUS: atypical hemolytic uremic syndrome 
ALI: acute lung injury 
AMD: age-related macular degeneration 
AP: alternative pathway 
ARDS: acute respiratory distress syndrome 
AT: anaphylatoxin 
BAL: bronchoalveolar lavage fluid 
CAD: cold agglutinin disease 
CoV: Coronavirus 
CP: classical pathway 
CR: complement receptor  
C1INH: C1 esterase inhibitor 
C4BP: C4 binding protein 
DAF: decay accelerating factor 
DC: dendritic cell 
FB: Factor B 
FD: factor D 
FH: factor H 
FHR: factor H-related 
FI: factor I 
FP: properdin 
HLH: hemophagocytic lymphohistiocytosis 
HSCT: hematopoietic stem cell transplantation 
LP: lectin pathway 
LTB4: leukotriene B4 
MAC: membrane attack complex 
MASP: mannan-binding lectin serine protease 
MBL: mannan-binding lectin 
MCP: membrane cofactor protein 
N protein: nucleocapsid protein 
NET: neutrophil extracellular trap 
PNH: paroxysmal nocturnal hemoglobinuria  
RCA: regulator of complement activation 
S protein: spike protein 
SARS: severe acute respiratory syndrome 
sC5b-9: soluble C5b-9 
SNP: single nucleotide polymorphism 
TA-TMA: transplant-associated TMA 
TMA: thrombotic microangiopathy 
 

 


